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Abstract. We report on an investigation of the magnetic properties of GdxEu1−xS mixed crystals with
compositions in the range of 0.6 < x < 1. For the two samples Gd0.8Eu0.2S and Gd0.73Eu0.27S a long-
range antiferromagnetic order was observed at low temperatures. Element-specific measurements exhibited
a different temperature dependence of the reduced sublattice magnetisation of the two magnetic species.
A model calculation and Monte Carlo simulations revealed that the different temperature dependence is
due to frustration effects. These frustration effects lead to a breakdown of the long-range order for higher
europium contents. For the Gd0.67Eu0.33S-sample we were able to observe a short-range antiferromagnetic
order with correlation lengths of a few 10 Å with X-ray resonance exchange scattering.

PACS. 75.25.+z Spin arrangements in magnetically ordered materials (including neutron and spin-
polarised electron studies, synchrotron-source X-ray scattering, etc.). – 75.40.Cx Static properties (order
parameter, static susceptibility, heat capacities, critical exponents, etc.) – 78.70.Ck X-ray scattering

1 Introduction

Since the first observation of a resonance enhancement
at the LIII-edge of holmium in 1988 [1] many magne-
tic systems have been investigated with X-ray resonance
exchange scattering (XRES) (see e.g. [2–7]). In contrast
to the more traditional tools of magnetic neutron or
non-resonant magnetic X-ray diffraction, XRES offers the
unique possibility to distinguish the magnetic order of dif-
ferent elements in a magnetic alloy by tuning the X-ray
energy to the absorption edges of the magnetic elements.
Typically resonance enhancements of two orders of mag-
nitude compared to non-resonant diffraction are obtained
at the LII- and LIII-edges of lanthanides. Therefore, if the
photon energy is tuned to one of the LII- or LIII-edges,
the resonant scattering from the corresponding element
largely dominates the non-resonant scattering from the
other species. So far, all investigations of lanthanide mixed
crystals (e.g. Ho0.5Er0.5 [8] or Ho0.5Tb0.5 [9]) revealed an
identical temperature dependence of all magnetic species.
It was argued that this would hold for all lanthanide sys-
tems, since the strong dipolar transitions involve the de-
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localised 5d-states, while the magnetic moment is mainly
due to the localised 4f -states.

We investigated a highly disordered and frustrated sys-
tem to observe the influence of frustration effects on the
behaviour of the magnetic ions. An excellent example is
given by mixed crystals of the series GdxEu1−xS. While
GdS is an antiferromagnetic metal, EuS is a ferromagnetic
insulator. At intermediate concentrations of both elements
in the mixed crystal GdxEu1−xS, a low temperature spin
glass phase exists [10].

We present in this paper element-specific measure-
ments performed on a series of samples of GdxEu1−xS
with x in the range of 0.6 < x < 1. The samples cover the
range where a long-range order of the magnetic ions ex-
ist to an intermediate regime with a spin glass phase [10].
We were able to observe a different behaviour of the two
magnetic species in the antiferromagnetic (long-range) or-
dered regime. In the intermediate regime of x we were able
to observe a short-range antiferromagnetic order. For the
first time it was possible to observe antiferromagnetic or-
der on a scale of about 40 Å with XRES.

We omit in this paper a description of XRES since
it was discussed in detail by many authors [11–15]. For
a short introduction we refer to our paper about an



274 The European Physical Journal B

Table 1. Composition of the investigated samples determined
with a microprobe (exact composition) as compared to the
nominal composition from preparation. The error bars were
calculated from the statistical scatter of the data and do not
include systematic errors from calibration.

nominal composition exact composition

Gd0.8Eu0.2S Gd0.782(5)Eu0.187(5)S1.031(5)

Gd0.73Eu0.27S Gd0.756(5)Eu0.229(5)S1.014(5)

Gd0.67Eu0.33S Gd0.664(5)Eu0.305(5)S1.030(5)

Gd0.6Eu0.4S Gd0.607(5)Eu0.394(5)S1.000(5)

investigation of GdS with XRES [16]. Some results for the
Gd0.8Eu0.2S-sample have previously been published as a
letter [17].

2 Experimental details

The synchrotron experiments described here were per-
formed at the beamline W1 of the Hamburger Synchro-
tronstrahlungslabor (HASYLAB) at Deutsches Elektro-
nensynchrotron (DESY). The beamline, which is located
at the 4.5 GeV Doris III storage ring, operates with syn-
chrotron light from a wiggler. It contains a fixed-exit
Si(111) double-crystal monochromator and a focusing gold
mirror. The band width of the monochromatic beam de-
pends on the collimation of the white beam and lies in the
range of 2–6 eV. In our case the energy resolution of the
experiment is defined by the band width of the beamline,
because the detector systems were used to determine the
integral number of elastically scattered photons.

All samples used are single-crystals grown at the ETH
Zürich by mineralisation [18]. They have dimensions of
about 3 × 3 × 1 mm3. They were mounted in a liquid he-
lium cryostat adapted for vertical scattering geometry at
medium X-ray energies from 4 to 12 keV [19]. The char-
acterisation of the Gd0.8Eu0.2S-sample was done with an
X-ray microscope at HASYLAB [20]. No phase separation
effects could be detected on a µm scale. In addition we
searched for diffuse X-ray scattering employing anomalous
scattering for contrast variation. No chemical short-range
order could be detected. We conclude that our samples are
homogeneous with a random occupation of the rare earth
sites with Gd3+– and Eu2+-ions. The exact compositions
of the samples were determined with a microprobe analy-
sis as shown in Table 1. The composition is uniform over
the whole sample.

Neutron scattering experiments were performed at the
four-circle diffractometer D9 at a hot neutron beam of the
Institut Laue Langevin (ILL) in Grenoble. A small two-
dimensional position-sensitive detector was employed [21].
Neutrons of wavelength 0.47 Å obtained from a Cu(220)
monochromator were used to reduce the strong absorption
of natural gadolinium. An indium filter suppressed the
λ/2 contribution. The Gd0.8Eu0.2S- and Gd0.73Eu0.27S-
samples were mounted in a closed cycle cryostat with a
base temperature of 14 K. For the investigation of the
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Fig. 1. The AF-II ordered structure. The numbers denote the
eight simple cubic sublattices that are required to describe the
AF-II type of order in general. Here we show a collinear spin
structure alternating for subsequent layers in one of the 〈111〉
directions. (Note, the rule of opposite spins at next-nearest
neighbour positions does not exclude more complicated canted
ground states.)

Gd0.67Eu0.33S-sample a liquid helium cryostat with a base
temperature of 2 K was used.

3 Experimental results

In this chapter we present the results from measure-
ments on four different samples of the series GdxEu1−xS
with x = 0.8, 0.73, 0.67 and 0.6. The two samples
Gd0.8Eu0.2S and Gd0.73Eu0.27S show a long-range order
of the magnetic moments. For higher europium-contents
in the Gd0.67Eu0.33S- and Gd0.6Eu0.4S-samples, the type
II long-range order vanishes.

3.1 Long-range ordered state

Pure GdS exhibits antiferromagnetic order of the second
type AF-II [16]. There are four possible domain orienta-
tions along the 〈111〉 directions and eight possible variants
of this antiferromagnetic order, see Figure 1. Averaging
over the intensities from the different domains related to
these ordering variants leads to magnetic Bragg intensities
at all reciprocal lattice positions of the type 1

2 (n, n′, n′′),
where n, n′, n′′ are odd integers. This is expected for sam-
ples with a sufficiently high gadolinium content.

First element-specific measurements with XRES at the
Gd0.8Eu0.2S- and Gd0.73Eu0.27S-sample provided magne-
tic intensities at the (1

2
1
2

9
2 )-position, while the energy was

tuned to the gadolinium-LII- and -LIII-edges as well as to
the europium-LII- and -LIII-edges. From this follows that
the europium-ions participate in the antiferromagnetic or-
der of the gadolinium-ions.
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Fig. 2. Absorption corrected energy dependence of the intensity of the ( 1
2

1
2

9
2
) magnetic Bragg-peak at the gadolinium- and

europium-LII- and -LIII-edges. The data were taken from the Gd0.73Eu0.27S-sample at 4 K. The solid lines represent a fit with
equation (1) convoluted with the energy resolution of the beamline. The dashed line shows the energy dependence of the linear
absorption coefficient µ in cm−1, which we obtained from measurements of the fluorescence yield.

3.1.1 Energy dependence of XRES

To determine the energy dependence of XRES we
performed measurements at the gadolinium- and the
europium-LII- and -LIII-edges. A germanium detector with
an energy resolution of 250 eV was employed. This enabled
us to separate the elastic signal and the fluorescence scat-
tering to resolve the structure of the fluorescence lines.
We used the energy dependence of the Lβ1-line at the LII-
edge and of the Lα-line at the LIII-edge to determine the
energy dependence of the mass absorption coefficient as
described in [16]. In Figure 2 the energy dependence of
XRES is shown for the Gd0.73Eu0.27S-sample. Each datum
point represents the integral intensity of a rocking curve
measured at the specified energy. The data are corrected
for absorption, following the procedure detailed in [16].
The absorption correction does not completely remove the
asymmetry of the resonance line shape obtained in the raw
data. The remaining asymmetry is caused by a superposi-
tion of XRES and non-resonant magnetic scattering. The
resulting curve form is described by equation (1), which
is derived in [16].

dσ

dΩ
∼ |AM |2 +

|AR|2
E2

1

(E − E0)2 +
(

Γ
2

)2

+ 2|AM | |AR|
E

(E − E0)

(E − E0)2 +
(

Γ
2

)2 (1)

AM and AR are the amplitudes of the non-resonant mag-
netic scattering and XRES, respectively. Γ is the reso-
nance level width and E0 the resonance energy. The solid
lines in Figure 2 represent a fit with equation (1) convo-
luted with the energy resolution of the monochromator
(about 4 eV). The results of the refinement are given in
Table 2. The resonance energy E0 can be determined very
accurately. However, the absolute energy calibration of
the beamline is only feasible within a range of several eV.
From the energy dependence of the fluorescence the energy
of the absorption edge and of the white line can be deter-
mined. At all samples and measured edges the resonance
energy coincides within the estimated standard deviation
with the arithmetic mean between the energy of the ab-
sorption edge and the energy of the white line. In addition
a simultaneous investigation of the energy dependence of
the fluorescence of the different samples at the gadolinium
and europium LII- and LIII-edges showed that the absorp-
tion edge energy EE and the energy of the white line EWL

agrees within the error bars for all samples. Therefore the
absorption edge energy EE has been normalised to values
published in [22].

Due to the heat load on the monochromator, the
energy resolution is not constant. This gives rise to sys-
tematic differences for measurements performed in differ-
ent runs. The average level width is about 2.5 eV, corre-
sponding to a core-hole lifetime of 0.26 fs. No difference
between the resonance level width of the gadolinium- and
europium-ions is observable.
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Table 2. Spectroscopic data for the resonance behaviour of GdS, Gd0.8Eu0.2S, Gd0.73Eu0.27S and Gd0.67Eu0.33S at the
( 1
2

1
2

9
2
) reflection at 4 K. The meaning of the symbols is as follows: EE: Absorption edge energy (point of inflection) EWL:

White line energy (absorption maximum) E0: Resonance energy (compare Eq. (1)) Γ : Resonance level width (compare Eq. (1))
|AR|2, |AM |2: Square of the amplitude of XRES and the non-resonant magnetic scattering, respectively (compare Eq. (1)). Values
in parenthesis are estimated standard deviations due to counting statistics. In addition systematic errors have to be considered
such as the uncertainty of the energy resolution (about 1 eV). Because no absolute energy calibration of the beamline was
performed the absorption edge energy EE was normalised to previously published values [22]. The energy of the white line EWL

and the resonance energy E0 was corrected accordingly.

sample edge |AR|2 |AM |2 E0/(eV) EE/(eV) EWL/(eV) Γ/(eV)

GdS GdLII 7931.1(8) 7930 7932.0(1.4) 2.2(2)
(Fig. 2 in [16])

�
GdLIII 7245.0(5) 7243 7246.2(1.2) 2.8(2)

GdLII 460(16) 0.9(2) 7931.4(5) 7930 7933.9(1.0) 2.7(1)
GdLIII 252(9) 0.6(1) 7246.0(5) 7243 7246.9(1.0) 2.9(1)

Gd0.8Eu0.2S

����
��� EuLII 21.4(1.3) 0.3(1) 7619.9(1.0) 7617 7621.5(2.0) 2.8(1)

(Fig. 6.1 in [23])
EuLIII 12.2(9) 0.1(1) 6979.4(5) 6977 6979.6(1.0) 2.8(1)

GdLII 588(32) 1.6(4) 7931.8(5) 7930 7933.1(1.0) 1.6(1)
GdLIII 223(18) 0.5(2) 7245.6(5) 7243 7246.3(1.0) 1.9(1)

Gd0.73Eu0.27S

����
��� EuLII 42(4) 0.4(1) 7619.4(5) 7617 7620.6(1.0) 1.8(1)

(Fig. 2)
EuLIII 21(2) 0.1(1) 6979.0(5) 6977 6980.5(1.0) 1.9(1)

Gd0.67Eu0.33S GdLII 1.67(13) 0 7930.8(8) 7930 7932.3(1.0) 3(2)
(Fig. 6)

In the fourth column in Table 2 the non-resonant part
|AM |2 of the magnetic scattering is listed. Because all of
the data were corrected for absorption |AM |2 should be
constant, which is not quite the case. The determination of
the non-resonant magnetic scattering intensity is difficult
because also very weak non-resonant non-magnetic scat-
tering is observable. This is the reason for the large sys-
tematic errors of |AM |2. A comparison with datum points
far away from the absorption edge shows that the order of
magnitude of the intensity of the non-resonant magnetic
scattering was determined correctly.

The magnitude of the resonance enhancement follows
from the ratio of |AR|2 to |AM |2 and amounts to a factor
of a few hundred with large standard deviations due to
the uncertainty in |AM |2.

The branching ratio, the ratio between the absorption
corrected maximum resonance intensity at the LII- and
LIII-edge, lies in the range from 1.8 to 2.6 and is compa-
rable to 2.5 for GdS [16]. Within the estimated standard
deviation (ESD) the branching ratios at the gadolinium-
and europium-edges are identical.

A comparison of the element-specific intensities shows
that for the Gd0.8Eu0.2S-sample for example the integral
intensities measured at the gadolinium-edges are on aver-
age about a factor 21.4(2.2) larger than at the europium-
edges. The stoichiometry of the sample has to be taken
into account. The number ratio between gadolinium- and
europium-ions is 4 : 1. This results in a 5.4(6) times larger
scattering intensity at the gadolinium-edge as compared
to the respective europium-edge. Taking the stoichiometry
into account, factors of 5.2(8) and 3.9(7) have been deter-
mined for the LII- and LIII-edges of the Gd0.73Eu0.27S-
sample. Consistently for both samples the resonance en-

hancement at the gadolinium-edges is about a factor of
five larger as at the europium-edges. For the study of
the temperature dependence of the sublattice magnetisa-
tion, it is essential that the resonance line shape does not
change with temperature. This has been checked for the
Gd0.8Eu0.2S sample with measurements at 4 K and 45 K,
where no difference in line shape could be detected [23].

3.1.2 Temperature dependence of the reduced sublattice
magnetisation

We have measured the temperature dependence of XRES
at the gadolinium-LII- and -LIII- and at the europium-
LII- and -LIII-edges. XRES, as a second order perturba-
tion process [13], is not necessarily directly connected to
the sublattice magnetisation (see however [14]). Therefore,
we have performed additional neutron diffraction exper-
iments to establish the relationship between the XRES
intensity and the sublattice magnetisation. By a compar-
ison between XRES and magnetic neutron scattering we
could show in earlier experiments that for GdS the sublat-
tice magnetisation is proportional to the square root of the
integrated intensity of the magnetic Bragg reflections [16].

The investigation of the temperature dependence of
the XRES of Gd0.8Eu0.2S and Gd0.73Eu0.27S revealed a
completely different behaviour of the gadolinium- and
europium-ions. In Figures 3 and 4, the square root of the
integral intensity measured at the resonance energy at the
LII-edges of both elements, normalised to 1 for T → 0, is
plotted. We interpret this quantity as the element-specific
reduced sublattice magnetisation of the Gd3+- and Eu2+-
ions. To verify this assumption additional measurements
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Fig. 3. Temperature dependence for the Gd0.8Eu0.2S-crystal.
XRES has been used to determine separately the behaviour
of the gadolinium- and europium-ions. With magnetic neu-
tron scattering only the average magnetisation is accessible.
For comparison with the neutron data the weighted sum, ac-
cording to the stoichiometry, of the two XRES measurements
is shown.

with magnetic neutron scattering have been performed for
the Gd0.8Eu0.2S-sample. With magnetic neutron scatter-
ing only the average sublattice magnetisation is accessi-
ble. This average sublattice magnetisation and a weighted
sum, according to the stoichiometry, of the two XRES
measurements are compared in Figure 3. Both curves co-
incide within the error bars. This proves that the un-
usual temperature dependence of the XRES intensity of
the europium-ions corresponds to an abnormal tempera-
ture dependence of their sublattice magnetisation. It also
confirms that the europium-ions nearly reach the satu-
ration magnetisation, a quantity not directly accessible
by XRES. The insert in Figure 5 and the fit in Figure 4
clearly demonstrate that for both samples (x = 0.8 and
x = 0.73), the sublattice magnetisation for the Gd3+-
ions follows perfectly a mean-field behaviour for S = 7

2 .
This was also observed for pure GdS [16]. The tempera-
ture dependence of the reduced sublattice magnetisation
of the europium-ions will be described by a mean-field
model in Section 4 and a Monte Carlo Simulation (MCS)
in Section 5.

In order to investigate the critical behaviour of
the sublattice magnetisation for the Gd0.8Eu0.2S- and
Gd0.73Eu0.27S-samples, we have taken many more data
points with XRES in the critical region. Close to the Néel-
temperature of both samples a broadening is observed in-
dicating the presence of magnetic diffuse scattering. The
statistical accuracy of our data was not high enough to
perform a unique separation of the diffuse component.
Therefore, data very close to the Néel-temperature had
to be excluded from the determination of the critical ex-
ponent. Note, however, that due to the high Q-space res-
olution, TN can nonetheless be approached quite closely
before the diffuse component moves into the resolution
window of the experiment. In Figure 5 the remaining data
of the reduced sublattice magnetisation of the gadolinium-
ions is shown in a double logarithmic plot. The straight
line corresponds to a critical exponent which is defined as
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Fig. 4. Temperature dependence for the Gd0.73Eu0.27S-
crystal. XRES has been used to determine separately the be-
haviour of the gadolinium- and europium-ions. The solid lines
represent a fit to the data. For the Gd3+-ions a mean field func-
tion for spin S = 7

2 was used. The fit of the reduced sublattice
magnetisation m of the europium-ions was done as described
in the caption of Figure 7.
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Fig. 5. Temperature dependence of the reduced sublattice
magnetisation versus the reduced temperature τ of the Gd3+-
ions for the Gd0.8Eu0.2S- and Gd0.73Eu0.27S-samples. The in-
set shows a fit with a mean field function for spin S = 7

2 to
the reduced sublattice magnetisation of Gd0.8Eu0.2S. For the
Gd0.73Eu0.27S-sample the fit is shown in Figure 4.

follows:

m ∼ τβGd , with τ =
TN − T

TN
and m =

M

Ms
· (2)

Here M , Ms and TN denote the sublattice magnetisa-
tion, the saturation value of the sublattice magnetisation
and the Néel-temperature, respectively. The critical ex-
ponents βGd and Néel-temperatures determined for the
different samples are listed in Table 3. For a comparison
the values for pure GdS are also listed [16,24]. The para-
magnetic Curie-Weiss temperature was determined with
magnetisation measurements using a Faraday balance [25].
The coupling constants J1 and J2 have been calculated
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Table 3. Néel-temperatures, paramagnetic Curie-Weiss temperatures, critical exponents βGd for the gadolinium-subsystem
and coupling constants J1 for nearest neighbour and J2 for next nearest neighbour interactions as determined for GdS,
Gd0.8Eu0.2S and Gd0.73Eu0.27S. Below the temperature labelled with * a short-range antiferromagnetic order was observable
for the Gd0.67Eu0.33S-sample (see Sect. 3.2). The coupling constants for the mixed crystals represent the average of the coupling
constants of the gadolinium- and europium-ions which cannot been determined separately from the Néel- and Curie-Weiss
temperatures.

Sample TN/ K Θc/ K βGd J1/ K J2/ K

GdS[16] 57.72(3) −110 [24] 0.378(20) −0.42 −0.92
Gd0.8Eu0.2S 53.32(1) −61 [25] 0.45(1) −0.03 −0.91
Gd0.73Eu0.27S 36.4(1) 0.47(2) −0.59
Gd0.67Eu0.33S 23(2)∗ −32 [25]

from TN and Θc using the following equations [26]:

kBTN =
2
3
S(S + 1)(−6J2) (3)

kBΘc =
2
3
S(S + 1)(12J1 + 6J2) (4)

J1 and J2 are also shown in Table 3. The statistic of the
reduced sublattice magnetisation of the europium-ions is
not good enough to determine a critical exponent βEu.

3.2 Short-range ordered state

In contrast to the samples with higher gadolinium con-
centration, for the x = 0.67 sample we could not find
magnetic Bragg peaks corresponding to a type II antifer-
romagnetic order. By means of XRES as well as hot neu-
tron diffraction, we searched the reciprocal space for reflec-
tions corresponding to antiferromagnetic order of type I, II
and III. None of these scans nor scans along all main
cubic symmetry directions revealed any long-range anti-
ferromagnetic order. According to the phase diagram of
the GdxEu1−xS mixed crystals proposed in [10], the tran-
sition to a spin-glass state occurs for x < 0.6. Short-
range antiferromagnetic correlations will lead to broad
structures with very low peak intensities. Therefore we
employed a pyrolytic graphite crystal as polarisation anal-
yser in σ → π geometry. The background caused by non-
magnetic charge scattering is largely suppressed since for
charge scattering the polarisation is not rotated. With
this method we were able to detect magnetic diffuse scat-
tering at the (1

2
1
2

9
2 )-position in resonance at the GdLII -

edge at 4 K. In Figure 6 a scan in reciprocal space from
Q = (0.3 0.3 4.3) to Q = (0.7 0.7 4.7) around the (1

2
1
2

9
2 )-

position is shown. We observed a peak intensity of 0.6 pho-
tons/s above a background of 1.5 photons/s which leads
to a peak to background ratio of 0.4 : 1. To improve the
statistics of the experiment we repeated this measurement
at the beamline ID-20 at the ESRF. We gained a factor 6
in intensity, the peak to background ratio was determined
to be 0.7 : 1.

From the full width at half maximum (FWHM) of the
magnetic diffuse scattering the correlation length can be
determined. The instrumental resolution is about three
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Fig. 6. Gd0.67Eu0.33S Q-scan (0.3 0.3 4.3) −→ (0.7 0.7 4.7)
around the ( 1

2
1
2

9
2 )-position. The counting time was 90 seconds

for each datum point. The energy was tuned to the gadolinium
LII-edge; the temperature was 4 K. A polarisation analyser
with σ −→ π geometry was used. The solid line represents the
fit of a Gaussian curve to determine the integrated intensity.
The left inset shows the energy dependence of the magnetic
scattering around the ( 1

2
1
2

9
2 )-position at the gadolinium-LII-

edge. The right inset shows the temperature dependence of the
magnetic scattering around the ( 1

2
1
2

9
2
)-position in resonance at

the gadolinium-LII-edge.

orders of magnitude better compared to the FWHM and
can be neglected. The correlation length was determined
from the reciprocal lattice units (r.l.u.) with the following
equation:

ξ =
a0√

∆h2 + ∆k2 + ∆l2
· (5)

Here a0 denotes the lattice constant and ∆h, ∆k and
∆l the FWHM in 〈hkl〉-direction, respectively. At 4 K
the Gd0.67Eu0.33S-sample has a lattice constant of a0 =
5.66 Å. From the measurement at the (1

2
1
2

9
2 )-position

shown in Figure 6, a correlation length of 35(4) Å was cal-
culated. Q-scans in the 〈001〉-, 〈110〉- and 〈111〉-directions
performed at beamline ID-20 at the ESRF lead to correla-
tion lengths of 46(4) Å, 37(3) Å and 56(4) Å, respectively.
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Measurements at the EuLII -edge at the ESRF did not
reveal magnetic intensities, neither Bragg nor diffuse scat-
tering. Taking into consideration the factor five between
the resonance enhancement at the gadolinium-LII-edge
compared to the europium-LII-edge, the statistical accu-
racy of our measurements would have been good enough
to detect antiferromagnetic correlations of europium-ions
down to 20 Å correlation length. We conclude that within
these limits the europium-ions do not participate in the
antiferromagnetic short-range ordering. A short-range fer-
romagnetic order of the europium-ions cannot be investi-
gated with our method, because the magnetic scattering
intensity occurs at the same position as the charge scat-
tering which is about 10 orders of magnitude larger.

We also investigated the energy dependence of XRES
at the GdLII -edge of the Gd0.67Eu0.33S-sample as shown
in the left inset of Figure 6. The parameters determined
with a fit of equation (1) are also shown in Table 2. They
are comparable to the values determined for the long-
range antiferromagnetically ordered systems Gd0.8Eu0.2S
and Gd0.73Eu0.27S. The temperature dependence of the
integrated intensity is shown in the right inset of Figure 6.
Magnetic diffuse scattering can be observed up to 23(2) K.
Please note that the temperature dependence of the inte-
grated intensity is shown and not the temperature depen-
dence of the reduced sublattice magnetisation which is
identified with the square root of the integrated intensity
for long-range ordered systems.

Note that due to the high absorption cross section of
gadolinium and europium, we were not able to measure the
short-range correlations by means of neutron diffraction,
despite the fact that the momentum-space resolution is
much better adapted.

An investigation of a Gd0.6Eu0.4S-crystal with XRES
was performed employing the same method as for the
Gd0.67Eu0.33S-sample described above. Comparative mea-
surements at the charge reflections revealed the same scat-
tering intensities and quality of the crystals as for the
Gd0.67Eu0.33S-sample. We were not able to observe any
magnetic diffuse scattering at the (1

2
1
2

9
2 )-position.

4 Mean-field model

The europium-ions in the Gd0.8Eu0.2S- and
Gd0.73Eu0.27S-mixed-crystals participate in the anti-
ferromagnetic ordering of the gadolinium subsystem. As
expected for a collective phase transition, the long-range
order of the europium and gadolinium subsystem sets in
at the same Néel-temperature. However, the europium
subsystem exhibits a completely different temperature
dependence of the reduced sublattice magnetisation,
see Figures 3 and 4. As was verified with neutron mea-
surements at the Gd0.8Eu0.2S-sample (compare Fig. 3)
the different temperature dependences of the europium-
and gadolinium-ions are not caused by methodical or
experimental reasons.

To come to an understanding of the unusual tem-
perature dependence, we have performed model calcula-
tions as detailed in Appendix A. In the fcc-structure of

FM
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Fig. 7. Fit of the reduced sublattice magnetisation m of the
europium-ions of the Gd0.8Eu0.2S-sample with a combination
of a MF theory, representing the behaviour of single europium-
ions, and a so called “frustrated” MF theory, representing the
behaviour of europium-ion-pairs. The two curves were weighted
with the statistical likelihood of single europium-ions and
europium-ion-pairs. Larger europium-clusters were neglected.
The insert demonstrates schematically the frustration effect for
a ferromagnetic (FM) coupled Eu2+-pair in the antiferromag-
netic Gd3+-environment.

GdxEu1−xS the nearest neighbour interaction is topolog-
ically frustrated. Therefore, next nearest neighbour inter-
actions have to be taken into account. Moreover, in the
metallic phase the dominant interaction is of RKKY-type,
which is long ranged. In order to avoid all complications
due to a large parameter space and to catch the main phys-
ical effect, we have chosen the most simple model system
possible, for which the observed effect can be expected. In
the model presented in Appendix A, we assume that the
Gd- and Eu-ions are distributed randomly on a simple cu-
bic lattice and interact with nearest neighbour exchange
only. To obtain the correct type of magnetic order for the
endmembers, we assume that the Eu-Eu exchange is ferro-
magnetic, while the Gd-Gd exchange is antiferromagnetic.
For small Eu concentrations, we treat the Gd subsystem in
a mean field (MF) approximation, while the Hamiltonian
for Eu clusters in the Gd matrix is solved exactly. Frustra-
tion arises in Eu-pairs due to the ferromagnetic coupling
of the Eu-ions, while the coupling to the neighbouring Gd
ions is antiferromagnetic (see insert in Fig. 7). Our model
calculations show that the anomalous temperature depen-
dence of the europium subsystem is due to this frustration
effect. Single europium-ions, which have only gadolinium-
ions as nearest neighbours, participate in the antiferro-
magnetic ordering of the gadolinium-ions and exhibit the
same mean-field behaviour (Eq. (19)). The behaviour of
europium-pairs can be described by a “frustrated” mean-
field curve (Eq. (27)).

To test the model proposed in Appendix A we first cal-
culated the behaviour of gadolinium-ions in a gadolinium-
surrounding. The result was a mean-field like curve as ex-
pected. The parameters used are listed in Table 4 in the
column gadolinium-pairs. In Figures 7 and 4 the fits of the
reduced sublattice magnetisation of the europium-ions of
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Table 4. Parameters used during the fit of a “frustrated”
Brillouin-function to the temperature dependence of the re-
duced sublattice magnetisation. JGG, JEE and JEG are the
coupling constants between Gd-Gd-, Gd-Eu- and Eu-Eu-pairs,
respectively. Note that the calculations have been done on a
simple cubic lattice for nearest neighbour exchange interactions
only and that the parameters obtained cannot be interpreted
as the true exchange interactions for the GdxEu1−xS system.

gadolinium-pairs europium-pairs
sample JGG / K JEE / K JEG / K

GdS −1.03
Gd0.8Eu0.2S −0.95 +0.70 −0.59
Gd0.73Eu0.27S −0.60 +0.69 −0.41

the Gd0.8Eu0.2S- and Gd0.73Eu0.27S-samples are shown,
respectively. Also included in Figure 7 is a plot of the be-
haviours of single europium-ions and europium-ion-pairs
weighted with their stochastical probability. The parame-
ters used for the “frustrated” Brillouin-function are shown
in Table 4 in the columns europium-pairs.

The temperature dependence of the reduced sublat-
tice magnetisation of the Gd0.8Eu0.2S- and Gd0.73Eu0.27S-
samples can be described with the model calculations
detailed in Appendix A. The crude simplifications of
a simple cubic lattice with nearest neighbour interac-
tions only and the neglect of the retroaction of the
europium-pairs on the surrounding atoms do not al-
low us to determine the exchange parameters quantita-
tively. This explains the difference between the values in
Table 3 and Table 4. However, despite its simplicity,
the model shows that competing exchange interactions
and frustration effects are the reason for the anomalous
temperature dependence of the reduced sublattice mag-
netisation of the europium-ions in the Gd0.8Eu0.2S- and
Gd0.73Eu0.27S-samples.

5 Monte Carlo simulations

In order to explore the frustration effects and observed
changes in the critical behaviour in more detail, Monte
Carlo simulations (MCS) have been performed using a
Hamiltonian for a S = 7

2 spin model

H = −
∑
i,j

JijSi · Sj , (6)

where Jij is the effective exchange interaction between
spins at lattice sites i and j. In this semi-classical model
the axis of quantisation was chosen arbitrarily parallel to
the z direction, with Sz = − 7

2 , ..., 7
2 , Sx and Sy having con-

tinuous degrees of freedom and |S| =
√

7
2 (7

2 + 1). For com-
parison some results have been obtained from calculations
based on a classical Heisenberg model with equivalent ex-
change interactions. For the MCS we used a tentatively
more realistic interaction model (in comparison to the

Table 5. Effective interactions used in the Monte Carlo si-
mulations.

GdGd GdEu EuEu

J1 −1.27 K −0.85 K +1.21 K
J2 −2.82 K −1.86 K 0

MF treatment) extending to second nearest neighbours
on the fcc-cation-sublattice, see Table 5. Different to the
model given in Table 4 these parameters are chosen inde-
pendently of the composition. The interactions have been
estimated from the Néel-temperatures and from the
paramagnetic Curie-Weiss temperatures, however, these
interaction parameters for the MC simulation are
about 1.5 times larger than the original MF-estimates.
All calculations are done at zero field.

We used models with periodic boundary conditions
with sizes ranging from a few hundred to about 35 000
atoms; after relaxation, thermal averages have been taken
for (up to) 50 000 Monte Carlo steps/site.

Averages were taken to characterise the order, higher
order cumulants of the order parameter, the pair corre-
lations between nearest and second nearest neighbouring
spins 〈Si ·Sj〉, and, in more detail, the distribution of an-
gles between these spins. All these quantities have been
distinguished with respect to the specific elements.

The order parameter ml of the variants l of the AF-II
type of order, see Figure 1, can be defined as

ml =
1
8

∑
j

〈Sj〉 e2πihl·xj / |S| , (7)

where hl is a member of the ordering star h∗ = 1
2 〈111〉,

〈Sj〉 is the magnetisation of the sublattice j; the order
parameters ml are normalised by |S|.

One can distinguish four possible domain orientations
along the 〈111〉 directions, eight possible variants of an-
tiferromagnetic order, and eight different sublattices. The
ground state properties and the high degeneracy of the
AF-II type of order have been analysed in [27].

Note that the order parameters ml are not scalar quan-
tities. During the “observation time” in the MCS the or-
der parameters may turn in space and also in the higher
dimensional space of the order parameter components dif-
ferent linear combinations will occur. Therefore – for the
whole system as well as for the specific elements – a pos-
itive definite total order parameter m, which includes all
possible variants ml is more appropriate to use

m =

(∑
l

m2
l

)1/2

. (8)

Figure 8 shows the results for the order parameters m,
mGd and mEu. While – as expected for such a classical
calculation – the slope at low temperatures deviates from
our experimental data, at higher temperatures the frustra-
tion effects as seen in the MF treatment can be confirmed.
Note, that the MF-results have to be taken with some
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Fig. 8. Element-specific order in MCS. Temperature de-
pendence of the order parameter m; top: x = 0.8, bottom:
x = 0.73. (The symbol size is related to the different model
sizes.)

caution; one cannot expect that MF theory predicts the
correct critical temperature, in particular for a frustrated
system. Typically, MF approximations overestimate TN by
a factor comparable to the critical exponent γ. However,
the overall shape of the curve m(τ) can be well reproduced
by our improved MF model.

5.1 Frustration effects

From the averages for the angles between spins for first
and second neighbours it is found that (in the MCS) the
Eu-Eu spin pairs between second neighbours do not follow
the ideal collinear AF structure even at very low tempe-
rature. In view of the result from the MCS that mEu is
little but significantly less than 1 for the ground state at
T = 0, a similar behaviour in the real system is plausible
and likely. This is not at variance to the experimental re-
sults because an absolute calibration cannot be made with
sufficient accuracy.

The distributions of spin correlations of configurations
at various temperatures have been analysed; they are
shown in Figure 9. There is a fine-structure due to the
discrete levels of Sz. In particular at high temperatures
it resembles the spectrum for a random configuration of

spins with Sz = − 7
2 , ..., 7

2 . Apart from this fine-structure
at higher temperatures the angular distribution becomes
rather broad and there are no specific perpendicular spin
orientations, neither for Eu-Eu nor for Eu-Gd neighbours
in our model.

The first neighbour correlations 〈Si ·Sj〉 are completely
frustrated for the AF-II structure. Therefore, the cor-
relations in particular between the majority spins, the
Gd-pairs, average to zero, although the distribution has
detailed structures due to the discrete levels of Sz and
the distribution also depends upon temperature and Eu-
content.

The Eu-spins introduce with increasing concentration
more and more competing interactions. There is a note-
worthy effect on the correlation between Gd-Gd pairs,
which becomes especially transparent in simulations us-
ing a classical Heisenberg-spin model. Considering first
the pure GdS model, we find at high temperatures a ran-
dom spin correlation distribution where N(α) ∝ sinα, and
that lowering the temperature leads to more and more
collinear spin configurations and finally to the collinear
AF-II ground state. Recall, that the AF-II structure is
essentially determined by second nearest neighbour in-
teractions, leading to an AF-ordering on the four simple
cubic (sc) sublattices of the fcc cation sublattice. In ab-
sence of any nearest neighbour interaction (or any longer
ranged couplings between the four sc sublattices) the AF-
orderings on the four sc sublattices are independent of
each other and in general non-collinear. Collinear order-
ing of the AF-II type of order occurs, however, in case
of pure systems (independent of the sign of the bilinear
coupling), apparently because there is a higher density of
excited states at low energies for the collinear state as
compared to canted states.

For temperatures below TN, we observed in our simula-
tions that with increasing Eu content angles near to 90 de-
grees occur with higher probability while the weakly per-
turbed GdS shows a double peak distribution with a local
minimum at 90 degrees. One may note that these frustra-
tions effects are similar to that what would be expected
from terms of biquadratic exchange (which are not present
in our model).

A particularly intriguing result of the MCS is that
with additional contents of Eu the nearest neighbour cor-
relations between Gd spins are more in favour of canted
states instead of collinear states as shown in Figure 10. At
very low temperatures the broad maximum at 90 degrees
splits into two or even more peaks depending on the com-
position. This is consistently found for initially ordered
and disordered start configurations. The simulations in-
dicate that competing interactions inferred by the minor-
ity atoms (“Eu”) lead to non-collinear nearest neighbour
pairs also of the majority atoms (“Gd”), and the forma-
tion of canted ordered states, in which the AF order is
still preserved. We have not yet explored the variety of
possible ordered states, which will be a difficult problem.
No threshold concentration could be determined so far.
In the simulations an increasing number of ordered states
with different canting angles appeared. Considerably more
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Fig. 10. Spin correlations between nearest neighbours in classical Heisenberg models of GdS, Gd0.8Eu0.2S and Gd0.73Eu0.27S
(from left to right) for different temperatures, T/TN ≈ 0.02, 0.25, ∞ (dashed-dotted, dotted and solid lines, respectively). Note
that in the high temperature limit N(α) ∝ sin α resembles the density of possible states.

effort is needed to analyse their stability and determine
the phase diagram.

Since in the first Born approximation the scattering in-
tensity is related to pair-correlations only, this cannot pro-
vide a direct observation of the distribution of spin corre-
lations in such frustrated magnets. The intensity variation
when applying an external field could allow to discrimi-
nate between collinear and canted ordered states.

There is another noteworthy observation. Analysing
the ordered states, both collinear and non-collinear con-
figurations, we could not find domain walls in our models,
– which at first was also not expected because of the small
size of the models –, however, in general, different order-
ing variants contributed to the total order parameter of
the models, even for highly ordered configurations with
m ≈ 1. Figure 11 illustrates the non-collinear sublattice
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Fig. 11. Canted ordered AF-II structure found in MCS for
Gd0.8Eu0.2S. For a comparison with a not canted structure see
Figure 1.

magnetisations of one of the canted ordered states found
in the simulation. An explanation for the absence of do-
main walls is that the individual spins have non-vanishing
contributions to more than one of the different ordering
variants ml. This peculiar behaviour has been previously
observed in “multiple q” modulated magnetic structures;
the non-collinear ordering in Nd [28] is such an example.

5.2 Critical behaviour

The distribution of the spin orientations changes upon
ordering from a Gaussian distribution at high tempera-
tures to a distribution that is peaked in response to the
number of independent ordering variants. Therefore, the
higher moments of the spin distribution are of interest
in Monte Carlo studies of phase transitions. In particu-
lar, Binder [29] has shown that the 4th-order cumulants
depend on T and lattice size L but cross at the critical
temperature, where the fix-point Ũ(T,L) is a universal
quantity. In the analysis of the MCS we use this prop-
erty to determine the critical temperature. Note, that in
the power-law fit to the experimental data correlations be-
tween the critical exponent β and the critical temperature
cannot be avoided. Here we used the 4th-order cumulant

Ũ = 7 − 6
〈m4

t 〉
〈m2

t 〉2
(9)

with the properties that at T = 0, 〈m4〉 = 〈m2〉 = 1 and
therefore Ũ = 1 and for T � Tc the cumulant tends to
zero.

In principle, the exponent ν can be determined inde-
pendently from the slope

∂ŨL′

∂ŨL

∣∣∣∣∣
Ũ∗

=
{

L′

L

}1/ν

· (10)

However, the determination of this derivative with suf-
ficient numerical accuracy requires extreme efforts and is
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Fig. 12. Fourth order cumulant of the total order parameter
m plotted vs. temperature for five different system sizes of
models with x = 0.8. The crossing determines TN = 53.3(2) K
and Ũ∗ = 0.77(2).

not precise enough for the presently available Monte Carlo
results.

According to the theory of finite size scaling [29,30], if
the dependence of a physical quantity Q of a thermody-
namic system on the parameter τ , which vanishes at the
critical point τ = 0, is of the form Q ∝ |τa| near the cri-
tical point, then for a finite system of linear dimension L,
the corresponding quantity Q(L, τ) is of the form:

Q(L, τ) ≈ LaytF (τLyt) , (11)

where yt = 1/ν is the thermal scaling power and F (x) is
the finite size scaling function. It follows from (11) that
the scaled data Q(L, τ)Layt for different values of L and τ
can be described as a single function of the scaling variable
x = τLyt . Hence, one obtains the scaling expression for the
order parameter

m(L, τ) ≈ L−β/νF (τL1/ν) , (12)

which can be used to determine the critical exponents β
and ν. Recall that TN follows independently from the be-
haviour of the cumulant Ũ(T,L).

For the analysis of the finite size effects we distin-
guished the thermal avarages of m, mGd and mEu and
their fourth order cumulants. First, we consider the S =
7/2 model for Gd0.8Eu0.2S. Figure 12 illustrates the de-
termination of the critical temperature from the cumulant
crossing method.

A data collapse is found in the finite size scaling plot
of the total order parameter but also of the element-
specific order parameters using critical exponents close to
the Heisenberg values, see Figure 13.

Based on the same interaction-model we also studied
models of the more frustrated system Gd0.73Eu0.27S and
the pure system GdS. Figure 14 shows the determination
of TN for the model of Gd0.73Eu0.27S. In the MCS the criti-
cal exponents are not significantly altered with increasing
content of ferromagnetic impurities as can be seen in the
finite size scaling plots shown in Figure 15.
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Fig. 14. Fourth order cumulant of the total order parameter
m plotted vs. temperature for three different system sizes of
models with the composition x = 0.73. The crossing determines
TN = 50.0(2) K and Ũ∗ = 0.78(2).

Next we discuss our Monte Carlo results for the mo-
dels of the pure system GdS. Again, the Néel-temperature
has been determined from the cumulant crossing method,
with TN = 61.3(3) K. The best common scaling behaviour
for the order parameter and the fourth order cumulant
is found using similar values of the critical exponents,
ν = 0.71(2) and β = 0.33(2), see Figure 16.

Considering the critical behaviour all data remain con-
sistent with β = 0.35(2) and ν = 0.70(2). These results
are still very close to the values for the Heisenberg model,
β = 0.367 and ν = 0.707(3) [31], while MF theory predicts
β = ν = 1/2. Clearly, an attempt to use MF-exponents for
scaling fails, as illustrated in Figure 17. Hence, no cross-
over to a MF regime is seen in the MCS.

One may note that in these models of GdxEu1−xS the
observed changes in TN with composition are not well
reproduced, see Table 6, which indicates deficiencies of
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Fig. 15. Finite size scaling plot of the total average order pa-
rameter m for the composition x = 0.73, with TN = 50.0(2) K
and critical exponents, ν = 0.70(2) and β = 0.35(2).
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Fig. 16. Finite size scaling plots of the total order parameter
m and the fourth order cumulant U for the model of GdS
yield TN = 61.3(3) K and critical exponents, ν = 0.71(2) and
β = 0.33(2).

Table 6. Néel-temperatures of GdxEu1−xS. Comparison be-
tween measurements and Monte Carlo results obtained with
the interaction model of Table 5.

x = 1 x = 0.8 x = 0.73

experiment 57.72(3) K 53.5(5) K 36.4(5) K

MCS 61.3(3) K 53.3(3) K 50.0(2) K

our still very simplified interaction model. Recall, in these
MCS the interaction model is not altered with composi-
tion. However, a mere rescaling of the interactions with
respect to TN will not change the discussed critical prop-
erties.
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Fig. 17. Finite size scaling plot of the total average order
parameter m for the composition x = 0.8, based on TN =
53.3 K and mean-field critical exponents, ν = 1/2 and β = 1/2,
is clearly inadequate.

6 Discussion

Since we discussed the methodology of XRES in our for-
mer paper on pure GdS [16], we will mainly focus on the
magnetic behaviour of the GdxEu1−xS mixed crystals in
this discussion.

As it was discussed in detail in [16], the resonance line
shape as a function of energy remains asymmetric after
the absorption correction. The effect was explained with
an interference of resonance exchange scattering and non-
resonant magnetic scattering. With this model we were
able to satisfactorily reproduce the line shape of the energy
dependencies.

The values for the energy level width and the branch-
ing ratio determined with XRES are compatible with val-
ues and findings discussed in detail in [16]. The branch-
ing ratios between the resonance enhancements at the
europium-LII- and -LIII-edges are comparable to the ones
at the gadolinium L-edges, but the resonance enhance-
ments at the gadolinium-edges are about a factor five
larger than at the europium-edges. To explain these
findings, we have to discuss the electronic structure of
GdxEu1−xS alloys [32–34]. According to [33], the 4f7 lev-
els lie about 1 eV and 7 eV below the Fermi level for
EuS and GdS, respectively. The 5d band consists of the
eg and t2g subbands, has a total width of about 4 eV and
a lower band edge about 1 eV above and below the Fermi
level for EuS and GdS, respectively. Consequently, the eu-
ropium ions in EuS are divalent and the compound is an
insulator, while GdS is a metal due to the partially filled
5d conduction band. If Gd is doped into EuS, an impurity
band forms some 10 meV below the Fermi level. At higher
Gd concentrations, the impurity band merges into the con-
duction band of EuS. It is assumed that in an ionic picture,
Eu remains divalent throughout the whole series, whereas
Gd remains trivalent. This assumption is supported by
the shape of the absorption edges, (see Fig. 2), which

gives no indication for Eu3+ ions. The fact, that Gd3+and
Eu2+have the same electronic ground state 8S7/2 natu-
rally explains the comparable branching ratios for the two
elements. Apparently it cannot explain the smaller reso-
nance enhancement at the Eu edges. We also can rule out
the assumption that the europium ions do not reach a sat-
uration magnetisation close to 7 µB, as was demonstrated
by a comparison of the temperature dependence of the re-
duced sublattice magnetisation measured with XRES and
neutron scattering. As was shown with a polarisation ana-
lysis of XRES, only electric dipole transitions 2p 1

2
→ 5d

or 2p 3
2
→ 5d contribute significantly to the resonance en-

hancement at the LII- and LIII-edges, respectively [16].
Two reasons for the different size of the resonance en-
hancement, despite the ions having the same electronic
ground state, can be given. First, we may speculate that
because the Gd3+-ions are trivalent and the Eu2+-ions are
bivalent, the probability density of the electrons in the 5d
valence band is larger close to the Gd3+-ions (screening
effect) and this leads to a larger resonance enhancement
at the gadolinium-edges. Second, the Gd3+-ion is signifi-
cantly smaller as compared to the Eu2+-ion, thus giving
rise to different radial transition matrix elements.

After this discussion of XRES we now turn to the mag-
netic properties of the GdxEu1−xS mixed crystals. Both
magnetic species, the gadolinium- and the europium-ions,
participate in the antiferromagnetic order of type II for
samples with a high gadolinium content. We could not de-
tect any magnetic signal at positions in reciprocal space
not corresponding to the antiferromagnetic order of type
II neither with XRES nor with magnetic neutron scatter-
ing.

Our element-specific investigation of the temperature
dependence of the reduced sublattice magnetisation re-
vealed a different behaviour of the two magnetic species.
The behaviour of the Gd3+-ions in the two investigated
samples Gd0.8Eu0.2S and Gd0.73Eu0.27S can be described
by a simple mean-field curve for S = 7

2 as is the case
for pure GdS [16]. The temperature dependence of the
sublattice magnetisation of the Eu2+-ions differs signifi-
cantly from mean-field. The temperature dependence of
the reduced sublattice magnetisation is nearly linear over
a wide temperature range. We were able to describe the
temperature dependence with a simple model, which only
takes nearest neighbour interactions on a simple cubic lat-
tice into account. It shows that the deviations from the
mean-field behaviour are due to frustration effects. These
are caused by a competition between the ferromagnetic
interactions of the europium-ions and an antiferromag-
netic interactions of the gadolinium-ions, which cannot be
satisfied simultaneously. Our MCS essentially confirm the
frustration effects described by the mean-field model. Con-
trary to the mean-field model these simulations are per-
formed on the complete cation sublattice and include the
additional frustration effects between nearest neighbours
that leads to the high degeneracy of the AF-II ground
state. The results of MCS indicate that the ground state
of the mixed systems Gd0.8Eu0.2S and Gd0.73Eu0.27S is
not completely ordered.
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Furthermore, we have found in the MCS an interest-
ing effect of the ferromagnetic impurities on the coupling
between order of the different simple cubic sublattices. In
the pure system corresponding to GdS a collinear AF-
II-structure was found in the simulations, which shows
that thermal fluctuations lift the degeneracy of the ground
states [35]. On the other hand the ferromagnetic impuri-
ties induce rather complex canted ordered states of the
AF-II-structure. A similar situation has been analysed
previously [36]. In a simpler model of non-magnetic impu-
rities in a frustrated vector antiferromagnet (XY-model on
a square lattice) the dilution induced perpendicular canted
ordering or “anticollinear” ordering. In the present study
ordered states with different canting angles changing with
the dilution were found in the simulations at low tem-
peratures indicating that in general the phase diagram is
even richer than expected. Dipolar interactions have been
neglected in the present study. According to [27] dipolar
anisotropy is not able to restrict the order from the 8 sub-
lattice to the 2-sublattice structure, while magnetostric-
tion can have this effect, and therefore, it may also sup-
press the existence of possible canted ordered states in
mixed frustrated magnetic systems. One might argue that
the somewhat deliberate choice of this simplified interac-
tion model may cause the discrepancies to the experimen-
tal observation. Of course, a better quantitative agreement
with respect to transition temperatures, for instance, can
be achieved by modified and more complex interaction
models. However, a quantitative fit of the phase diagram is
not the purpose of the MCS and in particular, this is not a
unique determination that guarantees to obtain more real-
istic interactions. In principle, a better approach could be
using the inverse Monte Carlo method to determine effec-
tive pair-exchange interactions [37] from measured short-
range order spin correlations. However, ferromagnetic cor-
relations that are likely for Eu-pairs cannot be separated
from the intense charge-term Bragg scattering.

An investigation of the critical behaviour revealed cri-
tical exponents of βGd = 0.45(1) and βGd = 0.47(2) for
the Gd0.8Eu0.2S- and Gd0.73Eu0.27S-samples, respectively.
These values are close to the critical exponent β = 0.5 of
the mean-field solution. They differ significantly from the
Heisenberg-value β = 0.378(20) which was observed for
pure GdS [16]. We performed MCS to investigate possible
changes of the critical exponents with Eu-content. Critical
exponents ν and β are obtained from a finite size scaling
analysis with values close to the theoretical Heisenberg
values for all considered compositions. While the element-
specific order parameters are distinctly different, in the
MCS the critical behaviour of the specific elements is still
described by the same critical exponents. There have been
no detailed theoretical studies of the critical behaviour
for mixed magnetic crystals [38]. One may speculate that,
rather than frustration effects, possible long-range inter-
actions induced by europium defects might be responsible
for the experimental observation. For a dilution series, a
change of the values of the critical exponents was pre-
dicted when the critical exponent of the specific heat of
the undiluted system is positive [39]. With specific heat

measurements a critical exponent α = 0.332(3) was de-
termined for GdS [25] and for a dilution series, we could
indeed expect a change of the critical exponents.

We now turn to the short-range ordered sample. In
comparison to the Gd0.73Eu0.27S-sample, a small increase
of the europium-concentration leads to a breakdown of
the long-range antiferromagnetic order as observed for
the Gd0.67Eu0.33S-sample. In the approach of our simple
model described in Section 4, the increase of the europium-
concentration leads to larger europium-clusters. In these
clusters the ferromagnetic coupling dominates. This leads
to a breakdown of the antiferromagnetic long-range or-
der in the Gd0.67Eu0.33S- and Gd0.6Eu0.4S-samples. For
the Gd0.67Eu0.33S-sample a short-range antiferromagnetic
order with correlation lengths about some 10 Å was ob-
served. The system disintegrates into an antiferromagnet-
ically correlated gadolinium subsystem and ferromagnet-
ically correlated europium subsystem. The Eu2+-ions no
longer take part in the antiferromagnetic order of the ga-
dolinium subsystem.

7 Summary and conclusions

We have investigated the magnetic behaviour of
GdxEu1−xS mixed crystals. XRES has been proven to
be a versatile tool to determine element-specifically the
properties of highly frustrated systems. We were able to
observe the development of the spin glass state on a micro-
scopic scale. In the gadolinium rich samples Gd0.8Eu0.2S
and Gd0.73Eu0.27S the europium-ions exhibit an antiferro-
magnetic order. Frustration effects lead to a deviation of
the reduced sublattice magnetisation of the europium-ions
from the Brillouin-function with spin S = 7

2 . This is due to
a ferromagnetic coupling in europium-clusters with two or
more ions, as was demonstrated with a model calculation
and MCS. The results of the XRES measurements were
confirmed with magnetic neutron scattering. With further
increasing europium concentration the europium-clusters
become larger and the ferromagnetic coupling inside the
clusters dominates. This leads to a breakdown of the long-
range antiferromagnetic order as it was observed for the
Gd0.67Eu0.33S- and Gd0.6Eu0.4S-samples.

In addition, the MCS revealed the possibility of canted
ordered AF-II structures induced by frustration effects be-
tween nearest neighbours due to the ferromagnetic impu-
rities.

For the first time it was possible to observe the
element-specific short-range antiferromagnetic order in a
spin glass state with XRES and to interpret this observa-
tion as a disintegration of the system into an antiferromag-
netically correlated gadolinium- and a ferromagnetically
correlated europium-subsystem.
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Appendix A: Mean-field treatment
of the frustration in GdxEu1�xS

In this appendix we describe the influence of the frustra-
tion effects due to ferromagnetic impurities on the anti-
ferromagnetic structure within the mean-field approxima-
tion.

The Gd3+- and Eu2+-ions possess a spherically sym-
metric ground state with spin S = 7

2 . The interaction
between the magnetic ions can therefore be described by
a Heisenberg-Hamiltonian:

H = −
∑
i,j

JijSiSj . (13)

To describe the stochastical occupation of the lattice sites
we define a bivalent function Pi:

Pi =
{

1 if site i is occupied by Gd3+

0 if site i is occupied by Eu2+ . (14)

For stochastically occupied sites and x representing the
proportion of Gd3+-ions in GdxEu1−xS it follows:

〈Pi〉 =
1
N

∑
i

Pi = x. (15)

The magnetic ions in GdxEu1−xS occupy the sites of a fcc-
lattice in which the antiferromagnetic nearest neighbour
interaction is highly frustrated and next nearest neigh-
bour interactions have to be considered. Moreover, in the
metallic phase a RKKY-interaction is present. Therefore
in a realistic model for GdxEu1−xS the amount of param-
eters will be high and the main physical effect might be
hidden. In order to avoid these complications our model
calculation will be carried out for a simple cubic lattice
with nearest neighbour interactions only. Even such a sim-
plified model should show the modification of the tempe-
rature dependence of the sublattice magnetisation caused
by frustration effects.

Using JGG, JEG = JGE and JEE for the nearest neigh-
bour interaction between Gd-Gd-, Gd-Eu- and Eu-Eu-
pairs and defining Qi ≡ 1−Pi we obtain the Hamiltonian:

H = −
∑
i,j

JGGPiPjSi · Sj −
∑
i,j

JEEQiQjSi · Sj

−
∑
i,j

JEGPiQjSi · Sj −
∑
i,j

JEGQiPjSi · Sj . (16)

The transition temperatures of GdS and EuS (EuS doped
with 3% Gd) are comparable [10]. Therefore we conclude
that the Eu2+-ions participate in the antiferromagnetic
ordering for large x and we assume that the absolute val-
ues of the coupling constants JGG and JEE are of the
same size: |JGG| ≈ |JEE|. The Néel-temperature of the
GdxEu1−xS-mixed-crystals for large x does not depend
on x, while for a dilution series (JEG = 0) we expect the
Néel-temperature to drop linearly. Because the Eu2+-ions
participate in the antiferromagnetic ordering for large x

Table 7. Probability Pn of an Eu2+-ion having n more Eu2+-
ions as nearest neighbours.

x P0 P1 P2 P3 P4 P5

0.95 0.74 0.23 0.03
0.90 0.53 0.35 0.10 0.01
0.80 0.26 0.39 0.25 0.08 0.01
0.73 0.15 0.34 0.31 0.15 0.04 0.01

we assume for simplicity that JGG and JEG are of the
same order of magnitude JGG ≈ JEG < 0. Hence we can
write for the Hamiltonian:

H = −
∑
i,j

Si · Sj {JGGPiPj + JEGPiQj + JEGQiPj

+JGGQiQj} −
∑
i,j

Si · SjQiQj(JEE − JGG)

≡ H′ + ∆H (17)

H′ is the Hamiltonian of a system of Gd3+-ions with single
Eu2+-ions, while ∆H describes the effect of nearest neigh-
bour Eu2+-pairs. For small europium concentrations, we
regard ∆H as a small perturbation because it depends on
the square of the Eu-concentration.

In our experiment we observed Bragg-scattering which
averages over all possible realizations of disorder. The aim
of this model calculation is to determine the expectation
value 〈Si〉. Since the fluctuations ∆J = JGG − JEG are
small, H′ can be treated as spatially independent:

H′ = −
∑
i,j

Si · Sj

{
JGG − 2x∆J + 2x2∆J

}
≡ −

∑
i,j

J ′Si · Sj . (18)

For small ∆J and x close to 1, J ′ changes nearly linearly
with x. In equation (18), H′ is again a well known Heisen-
berg Hamiltonian. In the mean-field approximation the
expectation value can be determined:

〈Si〉 = ê vi M(T ). (19)

The unit vector ê determines the direction of the spins
which are assumed to be collinear. vi contains the sign of
the spin for each site i and M(T ) represents the mean-
field approximation of the temperature dependence of the
sublattice magnetisation. The sublattice magnetisation of
the majority ions Gd3+and of isolated Eu2+-ions will show
the mean-field behaviour, but it has to be recognised that
a spin moment belongs with the probability x to the Gd-
subsystem. Next we consider the effect of the ferromag-
netic Eu-Eu-interaction in europium nearest neighbour
clusters, which is described by the term ∆H.

In a simple cubic lattice each site has six nearest neigh-
bours. The probability that a lattice site is occupied by
a Eu2+-ion is 1 − x. The probability for 0 ≤ n ≤ 6
more Eu2+-ions as nearest neighbours follows from the
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Binomial-distribution. In Table 7 the probability Pn for a
single Eu2+-ion having n more Eu2+-ions as nearest neigh-
bours are listed for some compositions x.

For x → 1, isolated Eu2+-ions and Eu2+-pairs dom-
inate and we can neglect Eu2+-clusters with more than
two ions.

For Eu2+-pairs the frustration effects, which are due to
the exchange interactions of adjacent Eu2+-ions, ∆H has
to be considered explicitly. If ∆H is regarded as a pertur-
bation of H′, the energy eigenvalues can be calculated in
first order approximation as the expectation value of the
perturbation operator ∆H with the wave functions of the
undisturbed system. Consequently we use the mean-field
approximation to describe the influence of the surrounding
Gd3+-ions on the Eu-pairs. This treatment, which was mo-
tivated by the perturbation theory, neglects the retroac-
tion of the Eu2+-pairs on the surrounding atoms. It fol-
lows from above for the Hamiltonian of a Eu2+-pair in an
antiferromagnetic molecular field:

Hp = −2JS1 · S2 − gµB(H1S
z
1 + H2S

z
2). (20)

For simplicity we write J for JEE, g is the Landé-factor, µB

the Bohr-Magneton and H1 and H2 describe the molecular
field of the surrounding Gd3+-ions. If we use the eigenfunc-
tions of the Heisenberg system as basis, Hp can be written
as a matrix. With S′ = S1 + S2 as overall spin operator
and M ′ as magnetic quantum number we get 64 eigenfunc-
tions |S′M ′〉 for an S = 7

2 system and a 64 × 64 matrix
〈S′M ′|Hp|S′′M ′′〉. The Heisenberg term −2JS1 ·S2 con-
tributes only to the diagonal elements of the matrix. With
the identity

S′2 = S2
1 + S2

2 + 2S1 · S2 (21)

we get the following matrix elements from the Heisenberg
term:

〈S′M ′| − 2JS1 · S2|S′′M ′′〉 = δS′′S′δM′′M′

× [J (2S(S + 1) − S′(S′ + 1))] . (22)

To determine the matrix elements of the Zeemann term,
we construct the wave function using the Clebsch-Gordan-
coefficients 〈Sm1;Sm2|S′M ′〉 and the product wave func-
tions of the single spins |Sm1;Sm2〉:

|S′M ′〉 =
+S∑

m1=−S

+S∑
m2=−S

|Sm1;Sm2〉〈Sm1;Sm2|S′M ′〉 ·

(23)

It follows for the matrix elements of the Zeemann term:

〈S′M ′| − gµB(H1S
z
1 + H2S

z
2)|S′′M ′′〉

=
+S∑

m1=−S

+S∑
m2=−S

+S∑
m3=−S

+S∑
m4=−S

〈S′′M ′′|Sm3;Sm4〉

×〈Sm3;Sm4| − gµB(H1S
z
1 + H2S

z
2)|Sm2;Sm1〉

×〈Sm2;Sm1|S′M ′〉

=−gµB

+S∑
m1=−S

+S∑
m2=−S

〈S′′M ′′|Sm2;Sm1〉

(H1m1 + H2m2)〈Sm2;Sm1|S′M ′〉· (24)

The Clebsch-Gordan-coefficients are not equal to zero for
m1 + m2 = M ′ = M ′′. Therefore the Zeemann term only
contributes to matrix elements with M ′ = M ′′. If we use
m1 = m and m2 = M ′−m, we get for the matrix elements
of Hp:

〈S′′M ′′|Hp|S′M ′〉 =
δS′′S′δM′′M′ [J (2S(S + 1) − S′(S′ + 1))]

+δM′′M′
∑
m

[−gµB(H1m + H2(M ′ − m))]

×〈S(M ′ − m);Sm|S′M ′〉 · 〈S(M ′ − m);Sm|S′′M ′〉·(25)

We sum over all indices m with −S ≤ m ≤ +S and −S ≤
M ′ − m ≤ +S. The eigenvalues ES′M′ and eigenvectors
|i〉 can be evaluated numerically. With the help of the
partition function

Z =
2S∑

S′=0

S′∑
M′=−S′

e−ES′M′/kBT (26)

it is possible to calculate the expectation value of the z
component of the spins of the two Eu2+-ions:

〈Sz
1〉 =

1
Z

Tr
[
Sz

1e
−Hp/kBT

]
· (27)

To be able to form the trace in equation (27), the repre-
sentation of the operator Sz

1 in the standardised base of
the eigenvectors |i〉 is necessary:

〈i|Sz
1|i〉 =

∑
S′M′

∑
S′′M′′

〈i|S′M ′〉〈S′M ′|Sz
1|S′′M ′′〉〈S′′M ′′|i〉 ·

(28)

Analogous to the approach in the representation of the
Zeemann term, which leads to equation (25), we get for the
matrix elements of the z-component of the spin operator:

〈S′M ′|Sz
1|S′′M ′′〉 = δM′M′′

+S∑
m1=−S

+S∑
m2=−S

〈S′M ′|Sm2;Sm1〉m1〈Sm2;Sm1|S′′M ′〉· (29)

From equation (28, 29) it follows:

〈i|Sz
1|i〉 =

∑
S′M′

∑
S′′

∑
m

m〈i|S′M ′〉 · 〈S′′M ′|i〉

×〈S′M ′|S(M ′ − m);Sm〉 · 〈S(M ′ − m);Sm|S′′M ′〉· (30)

The Clebsch-Gordan-coefficients are well known and the
coefficients 〈i|S′M ′〉 can be obtained from the diagonal-
isation of the matrix. Therefore it is straightforward to
calculate 〈i|Sz

1|i〉 in (30) numerically and then obtain 〈Sz
1 〉

from (27).
The numerical calculation of the expectation value

〈Sz
1〉 was done with a Fortran 77 program. The Clebsch-

Gordan-coefficients were calculated with the Racah-
formula [40]. For the diagonalisation of the weakly oc-
cupied matrix in equation (25) and the determination of
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the eigenvalues and eigenvectors special routines of the
program package “Eispack” [41–43] were used.

To describe the sublattice magnetisation of the Eu2+-
ions we summed the expectation value of single Eu2+-
ions and Eu2+-pairs (Eq. (27)) weighted with their relative
occurance (see Tab. 7). Eu-cluster with more than two
Eu2+-ions were neglected.
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